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P L A N E  C U R V I L I N E A R  C H A N N E L  

D. A .  N u s u p b e k o v a  a n d  B.  P .  U s t i m e n k o  

We determine the component energy equations for  mean and pulsating motion in a plane 
curvi l inear  channel. We discuss  the charac te r i s t i c s  of the turbulence in curvi l inear  chan- 
nels by compar ison  with those of rec t i l inear  flows. 

Consider the turbulent c i rcu la r  flow of an incompress ib le  fluid in a plane curvi l inear  channel. As 
shown in [1] at a sufficient distance f rom the entrance (for q~ > 120 ~ a profile (Fig. 1) is established in the 
curvi l inear  channel, the nondimensional velocity of which vq~/'vcflmax has become constant and does not 
change with increasing distance along the channel. The d iagram also shows the distribution of tangential 
fr ict ion s t r e s s e s  in a t r a n s v e r s e  section of the channel (u = v in the captions of Figs.  1, 3). 

The following equations hold for such a flow: 

v w=<%>+%', p=<p>+p '  
<vx> = <Vr> = O, <%> = <%> (r) 

p = <p> (r, ~) 

The der ivat ives  with respec t  to x and ~o of the averaged var iables  (with the exception of dp/d~ ~ O) 
are  zero.  Here and hereaf te r  (Vx>, (Vr>, (vr  (p> are  (Reynolds) averages;vx~ , Vr' , vq~',and pV are  the 
pulsation values of the axial, radial ,  and tangefltial velocity components and the static p ressure .  

We write down the equations we need in what follows: 

the energy balance of the mean motion 

{o I '  

<%>I]} ( (dB <%> i i d <%> 
v,i R v,~/ +{~ - -~ -  R (1) + 

- - t  v.~ ~ -  v,~ v,~ ~ -  ~=0 

the pulsating energy in the direct ion x, r ,  r 

(2) 
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Fig. 1 

the comple te  kinet ic  energy  balance  of the turbulence  

bY  Z ) f l y / % ' , . .  [ d <%> i ~%>\~ t +t< o 

Z l" ~V.l  
x = ~ .  n =  ,.~_---~, r =  ~ _ ~  (5) 

Here  

= 0.5 (<v~> + <v~> + <~>), E = 0.5 (<vx"~> + <v/~> + <%'~>) 

a re  the kinetic ene rg i e s  of the mean  and pulsat ing mot ions ,  X, 
R, T a re  nondimensional  coord ina tes ,  v.1 = q ~  is the dynam-  
ical  veloci ty ,  ~-i is the f r ic t ional  s t r e s s  at the convex channe l  
wall ,  NRe is the Reynolds c r i t e r ion .  

It is easy  to see  that  Eqs. (2)-(5) for  pulsat ing motion comple te ly  coincide with the analogous equa-  
tions for  c i r c u l a r  motion between co-ax ia l  rota t ing cy l inders  [2] while the energy  ba lance  equation for  the 
mean motion (1) d i f fers  only by the p r e s e n c e  of an additional t e r m  connected with the p r e s s u r e  fo rces  (1). 

F r o m  Eqs. (2)-(5) we have omitted,  because  of the s m a l l n e s s  of the t e r m s ,  the convect ive  t r a n s f e r  of 
the energy of the turbulence  of the mean motion and a lso  v iscous  and turbulent  diffusion. The  las t  two 
t e r m s ,  as shown in [3], only play a m a r k e d  ro le  in the l a m i n a r  and t rans i t iona l  boundary l aye r .  

The  f i r s t  t e r m  { o }1 in Eq. (1) has the physical  meaning of the local  change in the kinetic energy of 
the mean  motion,  {" }z is the action of the p r e s s u r e  f o r ce s ,  the t e r m s  {- }~ and { .  }4 a r e  a s soc ia t ed  with the 
act ion of the v iscous  and turbulent  s t r e s s e s ,  while {. }5 d e s c r i b e s  the convers ion  of energy between the 
mean and pulsat ing flows. 

The second t e r m  { �9 }z in Eq. (5) has a s i m i l a r  meaning but it occu r s  t he r e  with opposi te  sign to the 
t e r m  in equation (1) [cf. the t e r m s  { �9 }5 in Eq. ( t ) ] .  He re  the f i r s t  t e r m  indicates  the local  change in the 
energy of the turbulence,  while the l as t  t e r m  { �9 ~a indicates  the v iscous  d iss ipa t ion  of the pulsat ion energy.  

All the t e r m s  in the energy  ba lance  Eqs. (1)-(5) can be computed  using the exper imenta l  d e t e r m i n a -  
tion of the veloci ty  dis t r ibut ion,  the p r e s s u r e  and the tangential  f r ic t ion s t r e s s e s  [1] at sec t ions  of the 
plane cu rv i l i nea r  channel shown in Fig. 1. 

The r e su l t s  of these  computa t ions  for  es tab l i shed  flow in regions  at the convex and concave walls of 
the channel and in the cen te r  a r e  shown in Figs.  2, 3, and 4. 

The p r e s s u r e  gradient  along the axis  of the cu rv i l i nea r  channel p roduces  a confined c i r c u l a r  flow of 
the fluid. As a r e su l t  of the action of p r e s s u r e  fo rces ,  t he re  is an i nc rea se  in the kinet ic  energy  of the 
mean  motion in the whole flow domain (curves  2 in Figs .  2, 3, and 4). In the cen t ra l  zone the mean  flow 
loses  its kinet ic  energy  under the influence of turbulent  shear  s t r e s s e s  (curve 4 in Fig.  4). A pa r t  of the 
kinet ic  energy of the mean  motion is t r a n s f o r m e d  he re  into the energy  of the turbulence  (curve 5). 

The genera t ion  of turbulence  i n c r e a s e s  sharp ly  in the di rect ion of the walls of the cu rv i l inea r  chan-  
nel. The act ion of the v iscous  shea r  s t r e s s e s  in this region of the flow is negligibly sma l l  (curve 3). 

In the boundary l a y e r s  of the flow the components  of energy balance a s soc ia t ed  with the action of the 
v i scous  shear  s t r e s s e s  and with the genera t ion  of pulsat ing motion i n c r e a s e s  sha rp ly  (3 and 5 in Figs .  
2 and 4). Energy lo s ses  due to these  effects  a r e  compensa ted  by energy i n c r e a s e s  as a r e su l t  of the action 
of the turbulent  s h e a r  s t r e s s e s  4. This  t e r m  pas se s  through ze ro  nea r  the wall and becomes  negat ive,  
which co r r e sponds  to an i n c r e a s e  in the kinet ic  energy of the mean  motion. 

Thus,  in the boundary l a y e r  of the cu rv i l inea r  channel t he r e  is a flow of kinet ic  energy of the mean  
motion which is t r a n s f o r m e d  the re  into the energy  of turbulence .  The energy of the turbulence  genera ted  
by the mean  motion is d i ss ipa ted  and eventually is tu rned  into heat.  The  genera t ion  of pulsat ing energy  and 
its d iss ipat ion a r e  v i r tua l ly  balanced o v e r  a l a rge  par t  of the sect ion of the channel.  

Discuss ion  of the pulsat ing energy ba lance  equations in va r ious  d i rec t ions  makes  it poss ib le  to d e t e r -  
mine ce r t a in  c h a r a c t e r i s t i c s  of the turbulence  in cu rv i l i nea r  channels by c o m p a r i s o n  with r e c t i l i n e a r  f lows. 
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Fi r s t ,  as  dist inct  f r o m  the flow in a r ec t i l i nea r  channel, tu r -  
bulence is genera ted  not only in the di rect ion of the fundamental  
motion (v~12), but a lso  in the r ad i a ld i r ec t i on  (Vr)2). 

The curv i l inea r i ty  of the flow affec ts  in va r ious  ways the gen-  
e ra t ion  of pulsat ing energy  in the rad ia l  d i rec t ion in regions  nea r  
the convex and concave walls [2]. l~ear the convex wall (the region 
of s table  s t ra t i f ica t ion  of the flow) the co r re la t ion  (Vr'Vlq~) is neg ~ 
at ive,  while the second t e r m  in Eq. (3) is posi t ive.  This  impl ies  
that  the turbulence  is s u p p r e s s e d  and (Vr ~)  d e c r e a s e s .  The  con-  
v e r s e  pa t t e rn  is obse rved  nea r  the concave wall (the region of un- 
s table  s t ra t i f ica t ion  of the flow), where  the co r r e l a t i on  (VrgV~))is 
posi t ive  H e r e  the mean motion genera tes  turbulence  and (Vr w2) 
i n c r e a s e s .  

A reduct ion in the intensi ty  of the turbulent  motion at  the convex wall and an i nc r ea se  at the concave 
wall a r e  fully in a g r e e m e n t  with the intensif icat ion of the p r o c e s s e s  of turbulent  t r a n s f e r  obse rved  in ex-  
p e r i m e n t s  [1, 4] and so of the hydrodynamica l  f r ic t ion  drag  and heat  t r a n s f e r  a t  the concave wall and c o r -  
respondingly with the i r  reduct ion at  the convex wall. 

As dis t inct  f r o m  flows in r ec t i l i nea r  channels ,  where  the t e r m  for  the genera t ion  of turbulence  in the 
fundamental  d i rec t ion  of the motion [the second t e r m  in Eq. (4)] is a lways negat ive,  which co r r e sponds  to an 
i n c r e a s e  in the intensi ty of  the turbulence ,  in a cu rv i l inea r  channel t he re  is a reg ion  in which suppress ion  of 
the turbulence  (Vrt2) is o b s e r v e d  by the ave raged  motion. 

Indeed, s ince the points a t  which <v'~ v:> = 0, do not coincide,  we have 

.~ <%L + < ~  = o 
dr r 

Between them t h e r e  is a region (Fig. 1) in which the second t e r m  in Eq. (4) is posi t ive,  which indi- 
ca tes  suppres s ion  of the intensi ty of the pulsat ions (Vrt2) as a r e su l t  of the action of the turbulent  s h e a r  
s t r e s s e s .  

A s i m i l a r  pa t te rn  is a l so  obse rved  for  the comple te  energy of turbulence .  In the region of the flow 
between the points (Fig. 1) where  

<v r v~ > = O, d < v . }  __ <v~> = 0  
dr r 
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t e r m 2 o f E q . ( 5 )  is posi t ive  and t e r m  5 of Eq. (1) is negat ive.  F r o m  this t he r e  follows what is at f i r s t  
glance an unexpected conclusion that in this region the turbulent  energy d e c r e a s e s  and, cor respondingly ,  
the energy of the mean motion i n c r e a s e s ,  i .e. ,  t he re  is a t r an s fo rma t ion  of energy f r o m  the d i so rde red  
pulsat ing motion to the o r d e r e d  mean  motion. The p r e sence  in the flow of such a region is c l ea r ly  shown 
in Fig. 3 [cf. the region between the points (r - r t) (r 2 - r 1) = (0.3 and 0.5]. 

With a ce r t a in  degree  of s im i l a r i t y  these  phenomena occur  in acce le ra t ing  r e c t i l i n e a r  f lows [3]. In a 
flow acce le ra t ing  in the d i rec t ion  of motion the re  is a tendency for  a reduct ion in the intensity of the tu rbu-  
lence and in dece le ra t ing  flows a tendency for  an i nc rea se .  

A s i m i l a r  pa t tern ,  as  indicated in [5], is obse rved  a lso  in a tmosphe r i c  turbulence  on the sca le  of the  
genera l  c i rcula t ion  of the a t m o s p h e r e ,  where  obse rva t ion  cannot be explained without a s sumpt ions  about 
the t r a n s f o r m a t i o n  of the energy of i r r e g u l a r  pe r tu rba t ions  into the energy of ave raged  flow in ce r t a in  
regions .  

It should also be noted that the s ame  c h a r a c t e r i s t i c s  can also apparent ly  be obse rved  in other  t u r -  
bulent flows in which the posi t ions of zero  co r re l a t ions  <v~iv~ j ) and the de r iva t ive  of the veloci ty  (d ( v j ) /  
dxj) do not coincide,  for  example ,  in turbulent  boundary l aye r s  [6]. 
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